===== CONFIRMAÇÃO ===== Na [[lexico:f:filosofia:start|Filosofia]] contemporânea usou-se o vocábulo "confirmação" e os vocábulos afins confirmar, confirmável, confirmabilidade, etc, em dois sentidos principais. Por um lado, e de um [[lexico:m:modo:start|modo]] [[lexico:g:geral:start|geral]], falou-se de confirmação num [[lexico:s:sentido:start|sentido]] [[lexico:s:semelhante:start|semelhante]] ao de [[lexico:v:verificacao:start|verificação]]. Do mesmo modo que se admitiram graus de verificação, admitiram-se graus de confirmação, ou confirmabilidade, de enunciados. Por [[lexico:o:outro:start|outro]] lado, e de um modo mais específico e [[lexico:e:estrito:start|estrito]], falou-se de confirmação em [[lexico:r:relacao:start|relação]] às inferências indutivas. Com [[lexico:e:efeito:start|efeito]], levantou-se o [[lexico:p:problema:start|problema]] de [[lexico:s:saber:start|saber]] como, até que [[lexico:p:ponto:start|ponto]] e em que [[lexico:g:grau:start|grau]] ou graus pode dizer-se que uma [[lexico:h:hipotese:start|hipótese]] é confirmável. Isto equivale a perguntar-se que regras permitem distinguir entre inferências indutivas válidas e inferências indutivas [[lexico:n:nao:start|não]] válidas. O problema da confirmação pode formular-se como o problema da relação que existe entre dois enunciados e1 e e2, tais que e1 é um [[lexico:e:enunciado:start|enunciado]] que confirma e2. Ora, quando se procuravam formular com toda a [[lexico:p:precisao:start|precisão]] as condições necessárias para que um enunciado pudesse [[lexico:s:ser:start|ser]] considerados como confirmação de outro enunciado, descobriram-se vários paradoxos, usualmente chamados "paradoxos da confirmação". Um dos paradoxos é o seguinte: se um enunciado: e1 é [[lexico:c:consequencia:start|consequência]] do enunciado e1 e da [[lexico:u:uniao:start|união]] de e1 com qualquer outro enunciado, e n e portanto, se um enunciado, e1 e a união de e1 com qualquer outro enunciado, e n, acontecerá que e1 e n terão como consequência também e1. Portanto, qualquer enunciado confirmará qualquer enunciado. Este [[lexico:p:paradoxo:start|paradoxo]] resolve-se reconhecendo que [[lexico:d:dado:start|dado]] um enunciado, h1, que representa uma hipótese, todos os enunciados e n, que confirmam h1 são consequências de h1, mas que nem todas as consequências de h1 confirmam h1. Em rigor, só confirmam h1 os enunciados que são consequência de h1 e, ao mesmo [[lexico:t:tempo:start|tempo]], são exemplos de h1. Assim, um dos paradoxos é o seguinte: Se supusermos o enunciado: todos os cisnes são brancos 1: o enunciado a: é um cisne branco 2: será uma confirmação de 1. suponhamos [[lexico:a:agora:start|agora]] o seguinte enunciado: P é um cisne não branco 3: este enunciado não parece nem confirmar nem desconfirmar 1. consideremos agora o enunciado: Todas as [[lexico:c:coisas:start|coisas]] não brancas são não cisnes 4:. o enunciado: C é um não cisne não branco 5: está relacionado com 4 do mesmo modo que 2 está relacionado com 1. Com efeito, 1 e 4 são logicamente equivalentes, isto é, expressam a mesma [[lexico:l:lei:start|lei]], embora difiram no modo de a formular. Portanto, qualquer confirmação de 4 terá de ser uma confirmação de 1. Mas então 5 será uma confirmação de 1. Por outras [[lexico:p:palavras:start|palavras]], qualquer enunciado como: C é um gato pardo, c é uma pedra preciosa, c é um livro sobre [[lexico:l:logica:start|lógica]] indutiva, etc, terão de ser confirmações do enunciado: Todos os cisnes são brancos. Procurou-se resolver este paradoxo, apelando para o [[lexico:c:calculo:start|cálculo]] de probabilidades sem recorrer a leis de uma suposta "lógica indutiva [[lexico:i:independente:start|independente]]". Outros procuraram restringir as regras por [[lexico:m:meio:start|meio]] das quais se afirma que um dado enunciado confirma ou não confirma uma dada hipótese. Estes e outros paradoxos mostram que o [[lexico:c:conceito:start|conceito]] de confirmação é extremamente [[lexico:c:complexo:start|complexo]]. Para já, pode distinguir-se, com Carnap, entre um conceito semântico e um conceito [[lexico:l:logico:start|lógico]] de confirmação, e dentro do primeiro, entre um conceito [[lexico:c:comparativo:start|comparativo]] e um conceito [[lexico:q:quantitativo:start|quantitativo]] de confirmação. Logo, pode distinguir-se entre diversos graus de confirmação ou confirmabilidade. Para este efeito, Podem usar-se diversos termos ou expressões tais como "a é confirmado por n", "a é apoiado por b", "b proporciona uma [[lexico:p:prova:start|prova]] positiva de a", etc. Podem apresentar-se também valores numéricos para os graus de confirmação. {{indexmenu>.#1|skipns=/^playground|^wiki/ nsonly}}